3.3.56 \(\int \frac {x^2}{(d+e x)^2 \sqrt {a+c x^2}} \, dx\)

Optimal. Leaf size=137 \[ -\frac {d^2 \sqrt {a+c x^2}}{e (d+e x) \left (a e^2+c d^2\right )}+\frac {d \left (2 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e^2 \left (a e^2+c d^2\right )^{3/2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} e^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {1651, 844, 217, 206, 725} \begin {gather*} -\frac {d^2 \sqrt {a+c x^2}}{e (d+e x) \left (a e^2+c d^2\right )}+\frac {d \left (2 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{e^2 \left (a e^2+c d^2\right )^{3/2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

-((d^2*Sqrt[a + c*x^2])/(e*(c*d^2 + a*e^2)*(d + e*x))) + ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(Sqrt[c]*e^2) +
(d*(c*d^2 + 2*a*e^2)*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(e^2*(c*d^2 + a*e^2)^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1651

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, d
 + e*x, x], R = PolynomialRemainder[Pq, d + e*x, x]}, Simp[(e*R*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1
)*(c*d^2 + a*e^2)), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p*ExpandToSum[(m
+ 1)*(c*d^2 + a*e^2)*Q + c*d*R*(m + 1) - c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, c, d, e, p}, x] && Po
lyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {x^2}{(d+e x)^2 \sqrt {a+c x^2}} \, dx &=-\frac {d^2 \sqrt {a+c x^2}}{e \left (c d^2+a e^2\right ) (d+e x)}-\frac {\int \frac {a d-\frac {\left (c d^2+a e^2\right ) x}{e}}{(d+e x) \sqrt {a+c x^2}} \, dx}{c d^2+a e^2}\\ &=-\frac {d^2 \sqrt {a+c x^2}}{e \left (c d^2+a e^2\right ) (d+e x)}+\frac {\int \frac {1}{\sqrt {a+c x^2}} \, dx}{e^2}-\frac {\left (d \left (2 a+\frac {c d^2}{e^2}\right )\right ) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{c d^2+a e^2}\\ &=-\frac {d^2 \sqrt {a+c x^2}}{e \left (c d^2+a e^2\right ) (d+e x)}+\frac {\operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{e^2}+\frac {\left (d \left (2 a+\frac {c d^2}{e^2}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{c d^2+a e^2}\\ &=-\frac {d^2 \sqrt {a+c x^2}}{e \left (c d^2+a e^2\right ) (d+e x)}+\frac {\tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} e^2}+\frac {d \left (2 a+\frac {c d^2}{e^2}\right ) \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{\left (c d^2+a e^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 172, normalized size = 1.26 \begin {gather*} \frac {d \left (\frac {\left (2 a e^2+c d^2\right ) \log \left (\sqrt {a+c x^2} \sqrt {a e^2+c d^2}+a e-c d x\right )}{\left (a e^2+c d^2\right )^{3/2}}-\frac {d e \sqrt {a+c x^2}}{(d+e x) \left (a e^2+c d^2\right )}\right )-\frac {\left (2 a d e^2+c d^3\right ) \log (d+e x)}{\left (a e^2+c d^2\right )^{3/2}}+\frac {\log \left (\sqrt {c} \sqrt {a+c x^2}+c x\right )}{\sqrt {c}}}{e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

(-(((c*d^3 + 2*a*d*e^2)*Log[d + e*x])/(c*d^2 + a*e^2)^(3/2)) + Log[c*x + Sqrt[c]*Sqrt[a + c*x^2]]/Sqrt[c] + d*
(-((d*e*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*(d + e*x))) + ((c*d^2 + 2*a*e^2)*Log[a*e - c*d*x + Sqrt[c*d^2 + a*e^
2]*Sqrt[a + c*x^2]])/(c*d^2 + a*e^2)^(3/2)))/e^2

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.81, size = 168, normalized size = 1.23 \begin {gather*} -\frac {d^2 \sqrt {a+c x^2}}{e (d+e x) \left (a e^2+c d^2\right )}-\frac {2 \sqrt {-a e^2-c d^2} \left (2 a d e^2+c d^3\right ) \tan ^{-1}\left (\frac {-e \sqrt {a+c x^2}+\sqrt {c} d+\sqrt {c} e x}{\sqrt {-a e^2-c d^2}}\right )}{e^2 \left (a e^2+c d^2\right )^2}-\frac {\log \left (\sqrt {a+c x^2}-\sqrt {c} x\right )}{\sqrt {c} e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^2/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

-((d^2*Sqrt[a + c*x^2])/(e*(c*d^2 + a*e^2)*(d + e*x))) - (2*Sqrt[-(c*d^2) - a*e^2]*(c*d^3 + 2*a*d*e^2)*ArcTan[
(Sqrt[c]*d + Sqrt[c]*e*x - e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a*e^2]])/(e^2*(c*d^2 + a*e^2)^2) - Log[-(Sqrt[c]
*x) + Sqrt[a + c*x^2]]/(Sqrt[c]*e^2)

________________________________________________________________________________________

fricas [B]  time = 6.37, size = 1260, normalized size = 9.20

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*((c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x)*sqrt(c)*log(-2*c*x^2 - 2
*sqrt(c*x^2 + a)*sqrt(c)*x - a) + (c^2*d^4 + 2*a*c*d^2*e^2 + (c^2*d^3*e + 2*a*c*d*e^3)*x)*sqrt(c*d^2 + a*e^2)*
log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(
c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) - 2*(c^2*d^4*e + a*c*d^2*e^3)*sqrt(c*x^2 + a))/(c^3*d^5*e^2 + 2*a*c^2*d
^3*e^4 + a^2*c*d*e^6 + (c^3*d^4*e^3 + 2*a*c^2*d^2*e^5 + a^2*c*e^7)*x), 1/2*(2*(c^2*d^4 + 2*a*c*d^2*e^2 + (c^2*
d^3*e + 2*a*c*d*e^3)*x)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^
2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) + (c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 +
a^2*e^5)*x)*sqrt(c)*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) - 2*(c^2*d^4*e + a*c*d^2*e^3)*sqrt(c*x^2 +
 a))/(c^3*d^5*e^2 + 2*a*c^2*d^3*e^4 + a^2*c*d*e^6 + (c^3*d^4*e^3 + 2*a*c^2*d^2*e^5 + a^2*c*e^7)*x), -1/2*(2*(c
^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x)*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(
c*x^2 + a)) - (c^2*d^4 + 2*a*c*d^2*e^2 + (c^2*d^3*e + 2*a*c*d*e^3)*x)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a
*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2
 + 2*d*e*x + d^2)) + 2*(c^2*d^4*e + a*c*d^2*e^3)*sqrt(c*x^2 + a))/(c^3*d^5*e^2 + 2*a*c^2*d^3*e^4 + a^2*c*d*e^6
 + (c^3*d^4*e^3 + 2*a*c^2*d^2*e^5 + a^2*c*e^7)*x), ((c^2*d^4 + 2*a*c*d^2*e^2 + (c^2*d^3*e + 2*a*c*d*e^3)*x)*sq
rt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a
*c*e^2)*x^2)) - (c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x)*sqrt(-c)*arcta
n(sqrt(-c)*x/sqrt(c*x^2 + a)) - (c^2*d^4*e + a*c*d^2*e^3)*sqrt(c*x^2 + a))/(c^3*d^5*e^2 + 2*a*c^2*d^3*e^4 + a^
2*c*d*e^6 + (c^3*d^4*e^3 + 2*a*c^2*d^2*e^5 + a^2*c*e^7)*x)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(t_nostep)]Evaluation time: 0.66Error: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.01, size = 368, normalized size = 2.69 \begin {gather*} -\frac {c \,d^{3} \ln \left (\frac {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, e^{3}}-\frac {\sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, d^{2}}{\left (a \,e^{2}+c \,d^{2}\right ) \left (x +\frac {d}{e}\right ) e^{2}}+\frac {2 d \ln \left (\frac {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, e^{3}}+\frac {\ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+a}\right )}{\sqrt {c}\, e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(e*x+d)^2/(c*x^2+a)^(1/2),x)

[Out]

1/e^2*ln(c^(1/2)*x+(c*x^2+a)^(1/2))/c^(1/2)+2*d/e^3/((a*e^2+c*d^2)/e^2)^(1/2)*ln((-2*(x+d/e)*c*d/e+2*(a*e^2+c*
d^2)/e^2+2*((a*e^2+c*d^2)/e^2)^(1/2)*(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))-d^2/e^2/
(a*e^2+c*d^2)/(x+d/e)*(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2)-d^3/e^3*c/(a*e^2+c*d^2)/((a*e^2+c
*d^2)/e^2)^(1/2)*ln((-2*(x+d/e)*c*d/e+2*(a*e^2+c*d^2)/e^2+2*((a*e^2+c*d^2)/e^2)^(1/2)*(-2*(x+d/e)*c*d/e+(x+d/e
)^2*c+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))

________________________________________________________________________________________

maxima [A]  time = 0.53, size = 171, normalized size = 1.25 \begin {gather*} -\frac {\sqrt {c x^{2} + a} d^{2}}{c d^{2} e^{2} x + a e^{4} x + c d^{3} e + a d e^{3}} + \frac {\operatorname {arsinh}\left (\frac {c x}{\sqrt {a c}}\right )}{\sqrt {c} e^{2}} + \frac {c d^{3} \operatorname {arsinh}\left (\frac {c d x}{\sqrt {a c} {\left | e x + d \right |}} - \frac {a e}{\sqrt {a c} {\left | e x + d \right |}}\right )}{{\left (a + \frac {c d^{2}}{e^{2}}\right )}^{\frac {3}{2}} e^{5}} - \frac {2 \, d \operatorname {arsinh}\left (\frac {c d x}{\sqrt {a c} {\left | e x + d \right |}} - \frac {a e}{\sqrt {a c} {\left | e x + d \right |}}\right )}{\sqrt {a + \frac {c d^{2}}{e^{2}}} e^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

-sqrt(c*x^2 + a)*d^2/(c*d^2*e^2*x + a*e^4*x + c*d^3*e + a*d*e^3) + arcsinh(c*x/sqrt(a*c))/(sqrt(c)*e^2) + c*d^
3*arcsinh(c*d*x/(sqrt(a*c)*abs(e*x + d)) - a*e/(sqrt(a*c)*abs(e*x + d)))/((a + c*d^2/e^2)^(3/2)*e^5) - 2*d*arc
sinh(c*d*x/(sqrt(a*c)*abs(e*x + d)) - a*e/(sqrt(a*c)*abs(e*x + d)))/(sqrt(a + c*d^2/e^2)*e^3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^2}{\sqrt {c\,x^2+a}\,{\left (d+e\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((a + c*x^2)^(1/2)*(d + e*x)^2),x)

[Out]

int(x^2/((a + c*x^2)^(1/2)*(d + e*x)^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\sqrt {a + c x^{2}} \left (d + e x\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(e*x+d)**2/(c*x**2+a)**(1/2),x)

[Out]

Integral(x**2/(sqrt(a + c*x**2)*(d + e*x)**2), x)

________________________________________________________________________________________